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UAS Operations in High-Density
Low-Altitude Urban Environments
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Unmanned Aircraft Systems (UAS) Traffic Management (UTM) 
concepts are advancing toward flight over populated regions.

Significant technical challenges are imposed by these environments that 
makes traffic management difficult, particularly for low-altitude flight in 
high-density urban environments.

Studies anticipate high demand 

and economic growth potential 

in this market.

How do you facilitate routine, 

safe, and fair access to this 

high-demand airspace?
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Motivating Scenarios
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Safe and Regular Access for sUAS to High-Density Low-Altitude Urban Airspaces
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Challenges
4

• Low-altitude autonomous flight is inherently higher risk 

• Mixed-use airspace 

• Highly-constrained spaces within urban canyons

• High-density environment

• Other manned and unmanned airborne vehicles

• Flight near and above high-valued assets

• Cluttered wireless environment

• Hazardous ambient conditions, precipitation, and adverse winds

• Dynamic environment with significant uncertainty

• Limited size, weight, and power (SWaP) 

• Regulations must establish acceptable risk posture and safety margins

• Separation assurance (SA) and collision avoidance (CA) are difficult services to 
provide
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Risk to the vehicle

Nominal 
Operations Risk

Off-nominal (failure) 
risks

Consideration of Risks
5

Dynamic Ground 

Objects (DGO)

Static Ground

Objects (SGO)

Other Aircraft

Bilateral Risks
UAS

Nominal Risk (e.g., TO and Landing)
Off-Nominal (Failure) Risk

Stakeholders

(e.g., general public, operators, commercial 

entities, insurance companies, municipalities, 

certifying authorities, regulatory agencies)

Risks include potential damage, litigation, 
insurance costs, effects of vehicle/payload 
loss to businesses, etc.
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SAFE50 Vehicle Autonomy Requirements
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Challenges for UAS in Urban Environments

• Low reliability of current small UAS (high failure rates)

• Significant variability in vehicle systems and technologies on the market

• Limitations in current guidance, navigation, and control technologies

• Inability to see-and-avoid

• Limited onboard autonomy

• Limited understanding of vehicle behavior and dynamics in this environ.

• Limited onboard failure accommodation

• Insufficient communications technologies for urban environments

• Vehicle to ground, vehicle to vehicle, satellite coms, GNSS derived 
PNT

• Surveillance technologies are difficult to apply to this environment

• There is no common set of vehicle-level and systems-level requirements yet 
available for UAS in low-altitude urban flight.
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Vehicle Autonomy

• ‘Autonomy’ broadly generalized encompasses anything that allows systems to 
sense, think, communicate, and react with less human intervention.

• Research literature in UAS and vehicle autonomy is extensive, covering a broad 
range of disciplines and techniques, and touching on all of the challenges and 
limitations we have identified to some degree.

• Substantial levels of private/commercial R&D investments are targeted toward 
advancing vehicle autonomy technology.

• While the technology is rapidly advancing, there are still severe limitations in 
commercially available off-the-shelf (COTS) technologies and UAS vehicle 
systems.
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SAFE50 Project Goals and Approach

• Conduct an advanced study focusing on onboard vehicle-centric autonomy 
requirements that will allow safe, autonomous and routine sUAS access to high-
density low-altitude urban environments, and integrates into the emerging UTM 
framework.

• Advanced study will guide the next phase for a larger systems-level study

• Develop feasible point-designs for system-level and vehicle-level concept

• Develop prototypes and demonstrate feasibility of point-design

• Assemble and develop analysis tools

• Validated high-fidelity sims, software/hardware prototypes, flight vehicles

• Analyze effectiveness of the point-design in addressing technical challenges

• Leverage UTM partnerships to track emerging trends, technologies, gaps

• Work with academia and industry towards enabling urban area access

• Peer-reviewed and competed awards, encouraging academic/commercial 
partnerships, see announcements at https://nspires.nasaprs.com/
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Research Highlights
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Dynamics Modeling and Simulation
11

Credit: Tim Sandstrom, NASA Ames Research Center

Using computational fluid dynamics and wind tunnel experiments to created higher-fidelity and validated flight dynamics models.

Vehicle Testing in 7x10 ft Wind Tunnel 
Courtesy of Carl Russel, UTM, NASA Ames Research Center

Simulation Models



Presented to the SAE / NASA Autonomy and Next Generation Flight Deck Symposium. Moffett Field, CA, USA. April 18-19, 2017 

Autonomous Sensor Fusion,
Environment Mapping and Hazard Characterization
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Powerline Identification and Reconstruction.  Raw LiDAR point clouds (left), voxel processing (middle), 

reconstructed powerlines at 75m (right).

Environment Mapping Evaluations (LiDAR and Vision)
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GNSS/GPS Denied and Degraded Environments
13

Investigating integrated GNSS, LiDAR and vision for robust simultaneous localization and mapping (SLAM)

Vision-Based SLAM –

NASA NUARC Test Facility
LiDAR SLAM in NASA Disaster Assistance and Rescue Team (DART) Training Facility

LiDAR SLAM in NASA RoverScape Test Facility (collaboration with Near-Earth Autonomy, Inc.)
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Natural Terrain Multi-Species Wind Modeling and
Estimation under Uncertainty 
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Swarming Dragon-Eye Volcanic Plume Monitoring Project -

CFD study investigated SO2, CO2, and water vapor plume transport at anticipated emission rates 

over the Turrialba Volcano in Costa Rica.
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Urban Environment Wind Uncertainties
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Urban Architecture and CFD Simulation of Wind Profiles.
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UrbanScape Wind Uncertainties
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Autonomy Payload Architecture and Prototyping
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Experimental Multicopter Flight Management
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Real-Time Embedded Software Architecture

Flight Testing - NASA SAFE50 and UTM Flight Test - August 2015

Autonomy Architecture

Systems Analysis, CAD and Hardware Design

Integrated Payload/Vehicle Test Platform
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Flight System Interfaces and
Ground Control System Development
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Hardware-In-The-Loop Vehicle Simulation Configuration

Ground Control Stations Custom GCS Control InterfacesMulti-Vehicle Simulation Integration -

Airspace Operations Laboratory (AOL)

NASA Ames Research Center
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